Sistem Pengenalan Suara Dengan Metode Mel Frequency Cepstral Coefficients Dan Gaussian Mixture Model
نویسندگان
چکیده
ABSTRAK – Teknologi biometrik sedang menjadi tren teknologi dalam berbagai bidang kehidupan. memanfaatkan bagian tubuh manusia sebagai alat ukur sistem yang memiliki keunikan disetiap individu. Suara merupakan dan cocok dijadikan mengadopsi biometrik. Sistem pengenalan suara adalah salah satu penerapan fokus kepada manusia. memerlukan metode ekstraksi fitur klasifikasi, MFCC. MFCC dimulai dari tahap pre-emphasis, frame blocking, windowing, fast fourier transform, mel frequency wrapping cepstrum. Sedangkan klasifikasi menggunakan GMM dengan menghitung likehood kesamaan antar suara. Berdasarkan hasil pengujian, MFCC-GMM pada kondisi ideal tingkat akurasi sebesar 82.22% sedangkan tidak mendapatkan 66.67%.
 Kata Kunci Suara, Pengenalan, MFCC, GMM,
منابع مشابه
Mel Frequency Cepstral Coefficients for Speaker Recognition Using Gaussian Mixture Model-Artificial Neural Network Model
Speaker Recognition (SP) is a topic of great significance in areas of intelligent and security. In Biometric SP using automated method of verifying or recognizing the identity of the person on the basis of some application, such as a finger print or face pattern and human voice. Many method have been proposed in the literature are focusing on front end processing such as PLP and LPC. In this pa...
متن کاملMel Frequency Cepstral Coefficients for Music Modeling
We examine in some detail Mel Frequency Cepstral Coefficients (MFCCs) the dominant features used for speech recognition and investigate their applicability to modeling music. In particular, we examine two of the main assumptions of the process of forming MFCCs: the use of the Mel frequency scale to model the spectra; and the use of the Discrete Cosine Transform (DCT) to decorrelate the Mel-spec...
متن کاملSpeech reconstruction from mel frequency cepstral coefficients and pitch frequency
This paper presents a novel low complexity, frequency domain algorithm for reconstruction of speech from the melfrequency cepstral coe cients (MFCC), commonly used by speech recognition systems, and the pitch frequency values. The reconstruction technique is based on the sinusoidal speech representation. A set of sine-wave frequencies is derived using the pitch frequency and voicing decisions, ...
متن کاملEarly Classifications of Bearing Faults Using Hidden Markov Models, Gaussian Mixture Models, Mel-frequency Cepstral Coefficients and Fractals
Most rotating-machines failures are often linked to bearing failures. Proper condition monitoring on bearings is therefore essential to reduce the duration of machine down-times. This paper introduces feature extraction methodologies that can facilitate early detection of bearing faults. The time-domain vibration signals of a rotating machine with normal and defective bearings are processed for...
متن کاملUsing Mel-Frequency Cepstral Coefficients in Missing Data Technique
Filter bank is the most common feature being employed in the research of the marginalisation approaches for robust speech recognition due to its simplicity in detecting the unreliable data in the frequency domain. In this paper, we propose a hybrid approach based on the marginalisation and the soft decision techniques that make use of the Mel-frequency cepstral coefficients (MFCCs) instead of f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Komputika
سال: 2022
ISSN: ['2252-9039', '2655-3198']
DOI: https://doi.org/10.34010/komputika.v11i2.6655